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Figure 1. What defines perceptually accurate lip movement for a speech signal? In this work, we define three criteria to assess perceptual
alignment between speech and lip movements of 3D talking heads: Temporal Synchronization, Lip Readability, and Expressiveness (a). The
motivational hypothesis is the existence of a desirable representation space that models and complies well with the three criteria between
diverse speech characteristics and 3D facial movements, as illustrated in (b); where representations with the same phonemes are clustered,
are sensitive to temporal synchronization, and follow a certain pattern as the speech intensity increases. Consequently, we build a rich
speech-mesh synchronized representation space that exhibits the desirable properties.

Abstract

Recent advancements in speech-driven 3D talking head gen-
eration have made significant progress in lip synchronization.
However, existing models still struggle to capture the percep-
tual alignment between varying speech characteristics and
corresponding lip movements. In this work, we claim that
three criteria—Temporal Synchronization, Lip Readability,
and Expressiveness—are crucial for achieving perceptually
accurate lip movements. Motivated by our hypothesis that a
desirable representation space exists to meet these three cri-
teria, we introduce a speech-mesh synchronized representa-
tion that captures intricate correspondences between speech
signals and 3D face meshes. We found that our learned rep-
resentation exhibits desirable characteristics, and we plug
it into existing models as a perceptual loss to better align
lip movements to the given speech. In addition, we utilize
this representation as a perceptual metric and introduce
two other physically grounded lip synchronization metrics
to assess how well the generated 3D talking heads align
with these three criteria. Experiments show that training
3D talking head generation models with our perceptual loss
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significantly improve all three aspects of perceptually accu-
rate lip synchronization. Codes and datasets are available
at https://perceptual-3d-talking-head.github.io/.

1. Introduction

Speech-driven 3D talking head generation focuses on gener-
ating 3D facial movements synchronized with input speech
signals. This plays a key role in enhancing communication
within multimedia applications, such as virtual reality, enter-
tainment, and education [39]. To provide users with a more
realistic and immersive experience, it is crucial that the facial
and lip movements of 3D avatars are synchronized with the
various aspects of speech. This synchronization should be
perceptually accurate from a human perspective, ensuring
that the avatars’ expressions are both natural and convincing.

While recent works in learning-based 3D talking head
generation [8, 9, 21, 27, 33, 46] aim to enhance the lip syn-
chronization capabilities, they commonly rely on minimizing
the Mean Squared Error (MSE) loss between generated 3D
facial motion and ground truth motion as a learning objec-
tive. This approach is practical, as it directly contributes to
minimizing the Lip Vertex Error (LVE), a commonly used
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metric that measures the MSE between the lip vertices of
generated 3D facial motions and the ground truth.

Despite the improvements in the LVE metric, existing
models still struggle to correlate lip movements with some
speech characteristics, such as wider mouth openings as
speech volume increases. These characteristics are not ad-
equately captured by existing datasets [8, 12], which have
limited ranges of facial motion patterns due to the small
dataset scale and restricted intensity range. Moreover, rely-
ing on MSE and LVE is insufficient for learning or assessing
perceptually plausible lip motions [21, 37], as it focuses
solely on vertex-wise geometric differences and overlooks
the true correspondence between the speech signals and lip
movements. A lower MSE and LVE do not necessarily cor-
respond to a more perceptually accurate lip movement.

These observations raise critical questions: What defines
perceptually accurate lip movement in response to a speech
signal, and how can we enhance this accuracy? We draw
inspiration from findings on human audio-visual perception:
1) Humans are sensitive to temporal asynchrony between
speech and lip movements; slight discrepancies can disrupt
the perception of natural synchronization [43]. 2) Humans
rely on accurate viseme-phoneme correspondence when as-
sessing lip-sync accuracy, expecting visual lip movements
to match the spoken phonemes [3]. 3) There is a propor-
tional increase in jaw and lip movements as speech intensity
increases, contributing to the expressiveness perceived in
natural speech [18, 28, 34, 40]. Through our human study,
we reveal an intriguing finding: participants favor lip move-
ments with intensity that corresponds to speech—even if they
exceed the established maximum acceptable asynchrony [43]
by twice—over those that are perfectly synchronized but lack
expressive alignment (Table 1-[Right]). This reveals that hu-
mans are more sensitive to expressiveness than temporal
synchronization when perceiving, highlighting the impor-
tance of expressiveness. Building upon these insights, we
define three criteria that significantly impact the perceptual
lip synchronization of 3D talking heads: Temporal Synchro-
nization, Lip Readability, and Expressiveness (Fig. 1 (a)).

Motivated by our hypothesis that a desirable representa-
tion space exists to meet these three criteria, we propose a
speech-mesh synchronized and rich representation that cap-
tures the intricate correspondence between speech and 3D
face mesh. We design a transformer-based architecture that
maps time-sequenced speech and mesh inputs to a shared
representation space. To effectively train this system, we em-
ploy a two-stage training method: we first develop a robust
audio-visual speech representation using a large-scale 2D
video dataset [1], which then serves as an anchor for learn-
ing a speech-mesh representation. We found that the first
step is important and leads to emergent desirable properties
(illustrated in Fig. 1 (b)) in the final representation. This
sequential approach ensures that the model first establishes

a space that captures a wide range of speech characteristics,
and then extends to explore the relationships between speech
and 3D face mesh across diverse speech intensities and facial
movements. Adopting this representation, we introduce a
plug-and-play perceptual loss adaptable to any existing 3D
talking head generation models [11, 21, 46], enhancing the
perceptual quality of 3D talking heads.

Furthermore, to assess the three criteria, we introduce
three metrics for each aspect. We leverage our learned repre-
sentation as a perceptual metric, Perceptual Lip Readability
Score (PLRS), to evaluate the perceptual lip readability of
lip movements. Also, we propose two physically grounded
lip synchronization metrics: Mean Temporal Misalignment
(MTM) for temporal synchronization and Speech-Lip Inten-
sity Correlation Coefficient (SLCC) for expressiveness.

Extensive experiments demonstrate that our perceptual
loss significantly enhances all three aspects: Temporal Syn-
chronization, Lip Readability, and Expressiveness, which
are demonstrated across various metrics: existing metric, our
newly proposed metrics, and human evaluations. We also
find that incorporating an additional pseudo-dataset [45],
which captures diverse ranges of speech and lip movement
intensities, can further improve expressiveness. Our main
contributions are summarized as follows:
• Defining three aspects—Temporal Synchronization, Lip

Readability, and Expressiveness—that affect the percep-
tual quality of 3D talking heads and proposing three evalu-
ation metrics for these aspects.

• Constructing a speech-mesh representation space that cap-
tures rich and diverse correspondences between speech
and lip movements.

• Proposing a plug-in perceptual loss using the constructed
speech-mesh representation and demonstrating improve-
ments on existing metric, our newly proposed metrics, and
human evaluations.

2. Related Work
Speech-driven 3D talking head generation. Speech-driven
3D talking head generation aims to generate realistic 3D
facial movements aligned with given speech. Among recent
data-driven methods [8, 9, 11, 21, 22, 33, 46, 48], Face-
Former [11] introduces a transformer-based autoregressive
model and leverages a pre-trained speech model to cap-
ture long-term audio context and past facial movements.
CodeTalker [46] employs a VQ-VAE to construct a discrete
facial motion space, addressing the over-smoothing problem.
Diffusion models [17, 31] have also been demonstrated to be
effective for 3D talking head generation [33, 36]. In addition
to synthesizing neutral facial motions, several works extend
the 3D talking head to express specific aspects, such as emo-
tional expressions [9, 22], multilingual capabilities [37], or
laughter [38]. Despite these advances, existing methods rely
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on minimizing MSE loss without a clear definition of percep-
tually accurate lip movement, overlooking the multifaceted
nature of lip synchronization. To address this, we define
three critical aspects of lip synchronization and propose rich
speech-mesh representation, along with its application as
a perceptual loss in a plug-and-play manner, enhancing all
three aspects of lip synchronization quality in existing 3D
talking head generation models [11, 21, 46].

Speech-face representation learning. Well-aligned rep-
resentation spaces learned from large-scale datasets such
as CLIP [24] and ImageBind [14] are valued for their
scalability and versatility. These spaces enable a wide
range of applications, including auxiliary loss [42], inter-
mediate representation [41], and evaluation metrics [16].
With this context, audio-visual representation spaces trained
specifically on speech and 2D face videos have been pro-
posed [6, 15, 29, 35]. For instance, SyncNet [6], a CNN-
based model learns to detect audio-visual temporal syn-
chronization and has been applied to several tasks, such
as active speaker detection [1, 7] and 2D talking head gen-
eration [23, 44, 49]. Similarly, a transformer-based AV-
HuBERT [29] has demonstrated remarkable effectiveness in
various tasks, including lip reading [30], audio-visual trans-
lation [5], and 2D talking head generation [44]. While there
has been significant progress in the 2D domain, advance-
ments in the 3D domain remain under-explored. Yang et
al. [48] extends the SyncNet architecture to accommodate
speech and 3D face meshes; however, its application is
limited to evaluating 3D talking heads. In this work, we
demonstrate the versatility of our representation space as
a plug-in module to improve the perceptual accuracy of
the existing speech-driven 3D talking head generation mod-
els [11, 21, 46], as well as to assess their performance.

Evaluation metrics for speech-driven 3D talking head.
The prevalent evaluation metric, Lip Vertex Error (LVE) [27],
measures the L2 distance between predicted lip vertices and
ground truth. Additional metrics, such as Upper Face Dy-
namics Deviation (FDD) [46] and Lip Readability Percent-
age (LRP) [21], consider different regions of facial motion.
These metrics, however, focus on vertex-wise geometric dif-
ferences between the ground-truth 3D facial motions and
neglect speech-related information. To incorporate both
speech and 3D face mesh data for evaluation, MultiTalk [37]
introduces an Audio-Visual Lip Readability (AVLR) metric,
which assesses perceptual accuracy of lip readability using
a pre-trained Audio-Visual Speech Recognition model [2].
Yet, AVLR relies on speech and 2D face video rendered from
the 3D face mesh, which may not align with the 3D talking
head domain. To address these limitations, we introduce
novel and comprehensive evaluation metrics that focus on
diverse aspects of lip synchronization: Mean Temporal Mis-
alignment (MTM), Perceptual Lip Readability Score (PLRS),
and Speech-Lip Intensity Correlation Coefficient (SLCC).

3. Essential Criteria for Perceptually Accurate
3D Talking Head

Generating a 3D talking head with lip movements that are
perceptually accurate to human observers requires a clear
understanding of the components that influence perceptual
quality. Although existing works have focused on improving
partial aspects of these talking head generation models, a
comprehensive exploration for establishing a perceptually
accurate 3D talking head model has barely been undertaken.
Drawing inspirations from extensive research in existing
works [10, 18, 21, 28, 34, 40, 43, 44] and our studies, we
identify three fundamental criteria essential for achieving
perceptually accurate lip movements in 3D talking heads.

Temporal Synchronization. This alignment is particularly
crucial in media involving human speech, where viewers
expect lip movements to precisely match the corresponding
speech in time. Temporal misalignment between speech and
lip movements indeed distracts viewers, reduces user expe-
riences, and negatively impacts audience perception [25].
Vatakis et al. [43] find that viewers are particularly sensitive
to speech-lip asynchrony compared to other audio-visual
asynchrony, such as music. They note that mismatches be-
come noticeable when speech precedes lip movements by
more than 50 ms or follows them by more than 220 ms.
These findings may hold the same in 3D talking head gen-
eration, where any misalignment between speech and lip
movements can break the illusion of realism, leading to
a diminished user experience and reducing the perceived
authenticity of the virtual character. Thus, we define the
temporal synchronization of the talking head as an important
aspect of lip synchronization quality.

Lip Readability. Visemes (or lip movements) must cor-
respond accurately to the speech phonemes to ensure the
spoken words are visually intelligible [3]. This aspect is
widely acknowledged as important in existing literature in
both 2D [44] and 3D [10, 21] speech-driven talking head
models, which leverage lip reading experts as an auxiliary
guidance to improve the visual intelligibility of the spoken
word. However, the mapping between speech and lip move-
ments is not one-to-one, making lip readability challenging
to define. For example, the size and shape of the opening
mouth and the dynamic movement patterns of the lips in
response to specific utterance differ at every moment [48] or
per individual [32]. To capture this complexity, we define
the lip readability within speech-mesh synchronized repre-
sentation space learned from a large-scale dataset, capturing
the comprehensive and nuanced correspondence between
speech and lip movements.

Expressiveness. Speech conveys not only linguistic content
but also varies in intensity. For instance, a speaker may
express the same text softly or loudly, with jaw and lip move-
ments proportionally increasing as speech intensity rises,
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A B

Temp. ✓ ✗

Exp. ✗ ✓

Prefer (%) 17.4 82.6

Table 1. Human studies on alignment criteria. [Left] Preference
scores (1-3) for 3D talking heads with varying lip movement in-
tensities paired with different speech intensities. [Right] Human
preference between (A) samples with precise timing but low ex-
pressiveness, and (B) samples with high expressiveness but 100ms
asynchrony—twice the commonly accepted 50ms threshold [43].

which contributes to perceived expressiveness in real-world
face recognition [18, 28, 40]. To demonstrate that the posi-
tive correlation of human preference between the intensity
of speech and lip movements also exists in 3D talking head
field, we conduct a human study by presenting 3D talking
heads with varied lip movement intensities paired with dif-
ferent speech intensities in Table 1-[Left]. Participants prefer
the lip movements with the intensity that match the intensity
of speech. Despite this distinct human preference for syn-
chronization between the intensity of corresponding speech
and lip movements, this aspect has barely been explored
in the talking head generation field. We thus define the ex-
pressiveness in 3D talking head as the correlation between
speech and lip movement intensity, which is crucial for estab-
lishing genuine talking heads and is expected to guide future
research aimed at improving perceptual lip synchronization.
Focus of this work. Among the three criteria for perceptu-
ally accurate 3D talking head, we find that recent 3D talking
head generation models achieve reasonable temporal align-
ment between speech and lip movements (see supplementary
for a visualization of temporal synchronization). Further-
more, we design an A vs. B test, prompting participants to
choose between two samples: (A) temporally synchronized
one while lacking expressive synchronization, and (B) the
other with expressive synchronization but with 100ms asyn-
chrony. Table 1-[Right] shows that users prefer sample B,
suggesting that humans may prioritize expressive synchro-
nization over strict temporal alignment. This insight directs
our focus toward enhancing all three aspects to better capture
perceptual realism in 3D talking head. Details of the human
study are in the supplementary material. Before introducing
metrics to assess the criteria, we present our synchronized
representation for designing our perceptual loss.

4. Speech-Mesh Synchronized Representation
We hypothesize that a desirable representation space exists
to meet the three criteria defined in Sec. 3. Motivated by this

hypothesis, we develop a rich speech-mesh synchronized
representation which captures the intricate correspondence
between speech and the 3D face mesh. We found that our
learned representation exhibits desirable properties, and we
adopt it as a perceptual loss to improve the perceptual accu-
racy of existing models with respect to these three criteria.

Overview. Directly learning a synchronized speech-mesh
representation presents challenges due to the scarcity of
speech-3D face mesh datasets. One potential solution is to
construct pseudo-GT 3D face meshes using reconstruction
models [13], although relying solely on pseudo-GT may not
suffice for building a robust representation. To overcome this,
we leverage the extensive knowledge from the speech-2D
lip video representations and adapt this to accommodate 3D
face meshes. Specifically, we propose a two-stage training
process: in stage 1, we learn an audio-visual speech rep-
resentation that accurately reflects lip movements from the
unlabeled in-the-wild 2D synchronized talking face video
dataset, LRS3 [1]. Subsequently, we leverage the pre-trained
speech representation from stage 1, using it as the anchor
space to learn a synchronized speech-mesh representation.

Stage 1. Learning audio-visual speech representation.
This stage aims to learn a rich speech-2D lip video repre-
sentation that effectively captures the correlation between
varying speech characteristics and lip dynamics. Motivated
by prior works [15, 35], we extend the integration of masked
autoencoder (MAE) and cross-modal contrastive learning
to learn a synchronized speech-2D lip video representation
using 2D videos. The architecture for stage 1 consists of two
modality-specific encoders, a cross-modal fusion encoder,
and two modality-specific decoders. (see Fig. 2-[Stage 1]).

Given a speech and 2D lip video pair, (Xs,Xv) ∈ D,
we begin by patchifying and tokenizing speech spectro-
grams and video frames into speech and video tokens as
S = (s1, . . . , sN ) and V = (v1, . . . ,vM ), where si,vj ∈
RH . We then randomly mask out P% portion of tokens.
The remaining unmasked speech tokens Sunmask and video
tokens Vunmask are respectively fed into the speech en-
coder Es and video encoder Ev , each consisting of Ne trans-
former layers. Each encoder extracts uni-modal embeddings,
Zl

s = El
s(S

unmask) and Zl
v = El

v(V
unmask), where l ∈

(1, . . . , Ne) denote the layer indices. Also, the mean pooled
speech and video embeddings, cls = MeanPool(Zl

s) and
clv = MeanPool(Zl

v), are derived from the corresponding
uni-modal embeddings. Following the uni-modal encoders,
we introduce a multi-modal fusion encoder Esv to exploit
complementary information from each extracted uni-modal
embedding. The speech and video embeddings are jointly
processed through this encoder, resulting in multi-modal fu-
sion embeddings Fs and Fv, i.e., [Fs,Fv] = Esv([Zs,Zv]),
where [, ] denotes concatenation. With the fusion embed-
dings Fs and Fv, we utilize each modality’s decoder to
reconstruct the original signals. Specifically, we employ a
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Figure 2. Pipeline of speech-mesh synchronized representation learning. We train our speech-mesh representation space in a two-stage
manner. In the first stage, we learn a rich audio-visual representation in 2D domain to capture the synchronization between lip movement and
speech. In the second stage, we train the 3D mesh encoder to align the 3D mesh space with the frozen speech space. As an application of our
speech-mesh representation space, we propose a plug-in perceptual loss to 3D talking head models to enhance the quality of lip movements.

speech decoder Ds and a video decoder Dv, each consist-
ing of Nd transformer layers. We pad each multi-modal
fusion embedding with trainable masked tokens at their
original positions, resulting in F′

s and F′
v. Each decoder

then reconstructs the respective signals; the reconstructed
speech spectrogram and video tokens as Ŝmask=Ds(F

′
s)

and V̂mask=Dv(F
′
v).

Training the model involves two objectives: learning the
cross-modal alignment between the speech-2D lip video sig-
nals, while reconstructing their original signals. Given B
speech-2D lip video token pairs in a batch, {Si,Vi}Bi=1, we
treat the true speech-2D lip video pair as positive samples,
while the others in the batch are considered negative samples.
To encourage alignment between temporally synchronized
speech-2D lip video instances, we utilize a cross-modal
contrastive learning strategy, InfoNCE [20]. We maximize
the cosine similarity between positive sample of the mean
pooled speech embedding cls,i = MeanPool(El

s(S
unmask
i ))

and the corresponding synchronized mean pooled video em-
bedding clv,i = MeanPool(El

v(V
unmask
i )). We first define

the speech-centric loss as:

LS→V = − 1

B

B∑
i=1

log
exp(cl

s,i·c
l
v,i/τ)∑B

j=1 exp(cl
s,i·cl

v,j/τ)
, (1)

where τ is a temperature hyperparameter. Also, we make
the objective symmetric by defining a video-centric loss as
LV→S. We sum LS→V and LV→S across L selected encoder
layers to obtain our final contrastive learning objective:

LInfoNCE =
∑

l∈L
LS→V + LV→S. (2)

For reconstruction, the model is trained in a self-supervised
manner by minimizing the reconstruction loss LMAE as:

LMAE=
1
B

∑B
i=1

[∑
∥Ŝmask

i −Smask
i ∥2

F

|Smask
i | +

∑
∥V̂mask

i −Vmask
i ∥2

F

|Vmask
i |

]
,

(3)

where |Smask
i | and |Vmask

i | denote the number of masked
speech and video tokens, respectively. Overall, our objective
function is defined as:

L = LMAE + λLInfoNCE, (4)
where λ is the weight factor for cross-modal contrastive loss.

We observe that the representation space trained with the
transformer architecture and a rich and large-scale 2D face
video dataset in this way already possesses the desired prop-
erties we pursue, illustrated in Fig. 1 (see supplementary for
visualizations of pre-trained speech representation). Moti-
vated by this, we transfer these emergent properties to the
speech-mesh representation space as follows.
Stage 2. Learning speech-mesh representation. In this
stage, we design a 3D mesh encoder that maps 3D face mesh
to the speech representation pre-trained in stage 1. This pre-
trained speech representation, derived from rich speech-2D
face video data, serves as a robust anchor space for learn-
ing the correlation between diverse speech characteristics
and 3D facial motions. We use contrastive learning loss to
align 3D facial motion embeddings with the anchored speech
representations, as shown in Fig. 2-[Stage 2].

Given a speech and 3D face mesh pair (Xs,Xm) ∈ D,
we patchify and tokenize speech spectrograms into speech
tokens S, and map these into pre-trained uni-modal mean
pooled speech embeddings cls = MeanPool(El

s(S)). Sim-
ilarly, we patchify 3D face mesh into mesh tokens M,
and feed them into the 3D mesh encoder Em consist-
ing of Ne transformer layers to extract mesh embeddings
Zl

m = El
m(M) and the corresponding mean-pooled mesh

embedding clm. For the learning objective, given B speech-
3D face mesh token pairs in a batch, {Si,Mi}Bi=1, we first
define speech-anchored loss as:

LS→M = − 1

B

B∑
i=1

log
exp(cl

s,i·c
l
m,i/τ)∑B

j=1 exp(cl
s,i·cl

m,j/τ)
, (5)
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as well as LM→S which is the mesh-anchored loss. Simi-
lar to Eq. (2), we sum LS→M and LM→S across L selected
encoder layers to train the 3D mesh encoder Em while the
speech encoder fixed. As a result, this two-stage training
approach yields a robust speech-mesh representation, which
significantly enhances the alignment between the speech and
3D face mesh modalities.
Adopting it as a perceptual loss. A key application of the
speech-mesh representation learned through the two-stage
training process is its use as a perceptual loss to enhance
the perceptual accuracy of the 3D talking head model (see
Fig. 2). Leveraging this representation as a perceptual loss
ensures that the generated lip movements are perceptually
accurate and aligned well with the speech.

Given B speech and generated 3D face mesh pairs in a
batch, {Si, M̂i}Bi=1, we define our perceptual loss with the
symmetric InfoNCE loss (Eq. (2)) as

Lpercp =
∑
l∈L

LS→M + LM→S. (6)

Our perceptual loss encourages synchronized speech and
mesh embeddings to pull closer together, while unsynchro-
nized ones to push apart. The effectiveness and analysis of
our perceptual loss will be discussed in later sections.

5. Evaluation Metrics
In this section, we describe our proposed evaluation metrics
that assess each criterion impacting the quality of 3D lip
accuracy, as discussed in Sec. 3. Here, we outline the high-
level concepts of our proposed metrics. Additional details
and experiments are provided in the supplementary material.
Mean Temporal Misalignment (MTM). To measure the
temporal discrepancy between speech and corresponding lip
movements, temporal correspondence annotations, such as
onset times for each modality, would typically be required.
As a proxy, we determine temporal correspondence and mea-
sure temporal discrepancies between the ground truth and
predicted lip vertex displacement sequences by using Deriva-
tive Dynamic Time Warping (DDTW) [19], which robustly
identifies local structural similarities compared to standard
Dynamic Time Warping (DTW) [4]. For simplicity, we fo-
cus on the central vertices of the upper and lower lips when
extracting displacement sequences, and use local extrema
in the DDTW process to measure temporal misalignment
by pinpointing precise time steps for mouth opening and
closing events. Consequently, Mean Temporal Misalign-
ment (MTM) ∆t is defined as ∆t = 1

K

∑K
k=1 ∆tk, where

K is the total number of video clips and ∆tk is the averaged
temporal misalignment of the k-th video clip.
Perceptual Lip Readability Score (PLRS). While Lip Ver-
tex Error (LVE) measures the accuracy of generated lip ar-
ticulations against the ground truth, it does not fully assess

whether lip movements are perceptually aligned with the
given speech. To address this, we leverage our speech-mesh
representation in Sec. 4 as a perceptual lip readability evalu-
ator. We compute the perceptual alignment using the cosine
similarity of the mean pooled speech and mesh embeddings.
Since this representation has learned a rich distribution of
speech correspondences across various facial movements,
our metric correlates highly with human perception, measur-
ing perceptual lip movement alignment more accurately than
LVE (see supplementary for the human study on metrics).
Speech and Lip Intensity Correlation Coefficient (SLCC).
As shown in Table 1-[Left], humans prefer aligned intensity
between speech and lip movement. Thus, the intensity of
generated lip movements should positively correlate with the
corresponding input speech. To quantify this, we define the
Speech and Lip Correlation Coefficient rSL as:

rSL =
∑K

k=1(SIk−S̄I)(LIk−L̄I)√∑K
k=1(SIk−S̄I)2

√∑K
k=1(LIk−L̄I)2

, (7)

where SIk and LIk denote Speech (SI) and Lip Intensity
(LI), respectively, S̄I= 1

K

∑K
k=1 SIk and L̄I= 1

K

∑K
k=1 LIk.

We define SI using speech loudness, specifically the z-
normalized Root Mean Square (RMS) value, which is a
widely accepted measure of speech intensity in signal pro-
cessing. To define LI, we measure the averaged lip displace-
ment value of a video clip, followed by the z-normalization.

6. Experiments
We first outline the evaluation setup, and then present thor-
ough analyses of the experimental results. Due to the space
limitation, we present more implementation details and addi-
tional experiments in the supplementary material.

6.1. Experimental Settings

Datasets. Most of the existing speech-driven 3D talk-
ing head generation methods rely on VOCASET [8] and
BIWI [12] to train and test the models. However, these
datasets have limited ranges of facial motion patterns due to
the small dataset scale and restricted intensity range, which
restricts their ability to fully capture the intricate relation-
ship between speech and 3D face mesh. To address the lack
of training dataset, we construct two large-scale speech-3d
face mesh benchmark datasets, LRS3-3D and MEAD-3D, by
processing LRS3 and MEAD videos using two monocular
face reconstruction methods: SPECTRE [13] for LRS3 [1],
which ensures accurate lip movements, and SMIRK [26] for
MEAD [45], which captures diverse speech and lip move-
ment intensities. We use LRS3 in the first stage and LRS3-
3D in the second stage to train our speech-mesh synchro-
nized representation. Then, for base model training and
evaluations, we adopt two configurations: (1) training and
testing with VOCASET, in line with existing work, and (2)
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Method
Temporal Lip ExpressivenessSynchronization Readability

MTM (↓) LVE (↓) PLRS (↑) SLCC / ∆ (↓)

VOCASET - - 0.409 0.34 / -

FaceFormer [11] 53.6 3.357 0.368 0.26 / 0.08
+ Ours rep. 52.2 3.091 0.463 0.37 / 0.03

CodeTalker [46] 61.8 3.700 0.381 0.38 / 0.04
+ Ours rep. 60.9 3.579 0.388 0.35 / 0.01

SelfTalk [21] 50.1 2.971 0.414 0.41 / 0.07
+ Ours rep. 49.2 2.924 0.418 0.35 / 0.01

Table 2. Quantitative results of lip synchronization on VO-
CASET [8] test set. We evaluate the base models on our proposed
lip synchronization metrics. We denote ∆ as the difference in
SLCC between the model and those measured on the data distri-
bution. A lower ∆ indicates the model more closely represents
the intensity correlation of the dataset. We demonstrate the effec-
tiveness of our representation in consistently enhancing all three
aspects of lip synchronization.

some
[m]

FaceFormer CodeTalker SelfTalkGT
+	Ours +	Ours+	Ours

are
[ ɑr]

Figure 3. Qualitative results of the effectiveness of our per-
ceptual loss for lip readability. Our perceptual loss guides base-
lines [11, 21, 46] to generate perceptually accurate lip movements.

combining MEAD-3D with VOCASET during training to
endow expressiveness and testing on MEAD-3D.

Base methods. We use three state-of-the-art 3D talking head
generation models [11, 21, 46] to evaluate the effectiveness
of our perceptual loss.

Metrics. To comprehensively evaluate the three aspects of
lip synchronization, we assess MTM, PLRS, and SLCC, cor-
responding to temporal synchronization, lip readability, and
expressiveness, respectively. Additionally, we compute the
level-wise SLCC for the MEAD-3D test set, which includes
three distinct emotional intensity levels, to evaluate the ex-
pressive capability of 3D talking head generation models.
We also measure LVE as part of the lip readability evaluation.

6.2. Experimental Results and Analysis
We conduct evaluations to assess the effectiveness of our
speech-mesh synchronized representation and the incorpo-
ration of an expressive speech-3D face mesh paired dataset
(i.e., MEAD-3D) in enhancing the three criteria.
How well do existing 3D talking head models achieve
lip synchronization in all three aspects? The results are
summarized in Table 2. For temporal synchronization, most
base models achieve MTM values between 50 and 60ms,
indicating performance close to the acceptable asynchrony

Method Perceptual Loss
Temporal Lip

Expressiveness
Synchronization Readability

MTM (↓) LVE (↓) PLRS (↑) SLCC / ∆ (↓)

VOCASET - - - 0.409 0.34 / -

FaceFormer [11]

✗ 53.6 3.357 0.368 0.26 / 0.08
3D SyncNet 55.6 3.316 0.435 0.38 / 0.04
Ours w/o 2D prior 55.3 3.278 0.400 0.42 / 0.08
Ours w/ 2D prior 52.2 3.091 0.463 0.37 / 0.03

CodeTalker [46]

✗ 61.8 3.700 0.381 0.38 / 0.04
3D SyncNet 59.6 4.319 0.379 0.14 / 0.20
Ours w/o 2D prior 55.9 3.579 0.374 0.23 / 0.11
Ours w/ 2D prior 60.9 3.579 0.388 0.35 / 0.01

SelfTalk [21]

✗ 50.1 2.971 0.414 0.41 / 0.07
3D SyncNet 49.5 2.941 0.405 0.35 / 0.01
Ours w/o 2D prior 54.4 3.149 0.417 0.39 / 0.05
Ours w/ 2D prior 49.2 2.924 0.418 0.35 / 0.01

Table 3. Ablation study on architectural choice and 2D prior
knowledge. We validate the effectiveness of the transformer-based
architecture and curriculum learning with a pre-trained 2D speech
representation by ablating them from our proposed representation.

(a) 3D SyncNet (b) Ours w/o 2D prior (c) Ours w/ 2D prior

mesh
speech

vowels consonants

aj æ ɑ ej i s,z tʃ f,v m p

Figure 4. t-SNE plot of ablation study. We plot the t-SNE graph
for each perceptual critic model. We represent the features with
same phoneme as same color. Squared and circled points denote
mesh and speech features from each representation, respectively.

(a)	Temporal	Synchronization (b)	Expressiveness

Figure 5. Behaviors of our representation in temporal and ex-
pressiveness sensitivity. We demonstrate the effectiveness of our
representation in temporal synchronization and expressiveness us-
ing a cosine similarity graph and speech feature plots, respectively.
We color the point as low, medium, and high intensity.

threshold. Regarding lip readability, SelfTalk [21] achieves
the best performance, while FaceFormer [11] has the lowest
PLRS score. Furthermore, CodeTalker [46] demonstrates the
closest SLCC values to the ground truth VOCASET mesh,
while FaceFormer exhibits the highest SLCC discrepancy.
Does our speech-mesh representation improve lip syn-
chronization? Yes. Table 2 and Fig. 3 show consistent
improvements in the three aspects with our perceptual loss.
What makes our speech-mesh representation have lip syn-
chronization ability? We hypothesize that the transformer-
based architecture and curriculum learning with a pre-trained
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Speech
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GT
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- + 

Figure 6. Qualitative results for the expressiveness. Given high and low intensity levels of speech, models trained on both MEAD-3D and
VOCASET show more expressive lip movements compared to those trained on VOCASET alone, and even better with our perceptual loss.

audio-visual speech representation contribute significantly
to improved lip synchronization. To validate this, we con-
duct ablation studies, summarized in Table 3, examining
the roles of pre-trained speech representation and architec-
tural design. Without the pre-trained speech representation,
base models show lower performance across metrics, and
CNN-based architectures, 3D SyncNet, do not clearly show
effectiveness, while ours with 2D prior consistently show
improvement. The t-SNE plots of perceptual critic models
in Fig. 4 show that, in (a) 3D SyncNet, speech and mesh
features corresponding to the same phoneme group are sepa-
rated. In (b) ours without 2D priors, speech and mesh fea-
tures lack separation and appear scattered without clustering.
Our representation (c), notably, tends to form more distinct
clusters according to phonemes, with vowels and consonants
grouped closely, potentially contributing to enhancing lip
readability. We also observe a directional progression in the
feature space, shifting from phonemes with mouth opening
(e.g., /aj/) to those with mouth closing (e.g., /f/).

We also examine our representation’s performance in
other aspects, temporal synchronization and expressiveness.
Figure 5-(a) demonstrates temporal sensitivity, as cosine
similarity drops when temporal misalignment is introduced
between input speech and 3D face mesh. In Fig. 5-(b), we
plot speech features at varying speech intensities, showing a
directional trend as intensity increases from lowest to highest.
Figures 4 and 5 imply that our representation holds favorable
properties discussed in Fig. 1 for the three criteria.

Can we unlock the expressive power of 3D talking heads?
Likely. Since VOCASET [8] lacks the range of diverse
speech and lip movement intensities, evaluating expressive
power requires testing on a dataset with a broader range of
intensities. To study this, we examine the expressiveness of
the base models on the MEAD-3D dataset, which includes
three intensity levels. We assess SLCC at each intensity
level to evaluate expressiveness and identify any expressive-
ness bounds as the level of intensity increases. We first
test the base models trained on VOCASET [8] against the
MEAD-3D test set. Table 4 shows these models demonstrate
limited expressiveness, with SLCC values showing mini-
mal increase across intensity levels. We hypothesize that

Method
Temporal Lip

Expressiveness
Synchronization Readability

MTM (↓) LVE (↓) PLRS (↑)
SLCC / ∆ (↓)

Lv1 Lv2 Lv3 Avg

MEAD-3D - - 0.230 0.24 / - 0.30 / - 0.39 / - 0.42 / -

FaceFormer [11] 59.6 3.207 0.299 0.08 / 0.16 0.07 / 0.23 0.07 / 0.32 0.06 / 0.36
+ MEAD-3D 59.5 1.139 0.176 0.26 / 0.02 0.30 / 0.00 0.34 / 0.05 0.35 / 0.07

+ Ours rep. 55.8 1.114 0.306 0.27 / 0.03 0.27 / 0.03 0.32 / 0.07 0.33 / 0.09

CodeTalker [46] 60.7 3.236 0.294 0.02 / 0.22 0.03 / 0.27 0.03 / 0.36 0.02 / 0.40
+ MEAD-3D 60.9 2.954 0.154 0.09 / 0.15 0.12 / 0.18 0.06 / 0.33 0.11 / 0.31

+ Ours rep. 58.6 2.705 0.221 0.18 / 0.06 0.29 / 0.01 0.31 / 0.08 0.31 / 0.11
SelfTalk [21] 53.4 3.396 0.294 0.14 / 0.10 0.14 / 0.16 0.17 / 0.22 0.15 / 0.27

+ MEAD-3D 54.2 1.238 0.216 0.16 / 0.08 0.28 / 0.02 0.32 / 0.07 0.31 / 0.11
+ Ours rep. 52.7 1.192 0.230 0.17 / 0.07 0.29 / 0.01 0.34 / 0.05 0.33 / 0.09

Table 4. Quantitative results of lip synchronization on MEAD-
3D test set. We evaluate the base models on the MEAD-3D test set.
We also compute the level-wise SLCC to evaluate the expressive
capability of the models.

this limitation arises, because VOCASET’s smaller scale
and intensity range restrict the model’s ability to learn re-
lationships between speech and lip intensity. To address
this, we integrate MEAD-3D with VOCASET for training,
aiming to boost expressiveness in the base models. This
approach consistently improves SLCC across all intensity
levels. However, simply adding MEAD-3D degrades lip
synchronization metrics, except for expressiveness, i.e., non-
trivial. To counterbalance this, we leverage our perceptual
loss, which effectively mitigates the degradation introduced
by MEAD-3D while improving expressiveness (see Fig. 6).

7. Conclusion
This paper addresses challenges in existing 3D talking head
generation models, which often overlook the true correspon-
dence between speech and lip movements, making it difficult
to accurately link lip movements with varying speech charac-
teristics. To overcome this issue, we identify three essential
aspects—Temporal Synchronization, Lip Readability, and
Expressiveness—that influence the perceptual quality of lip
movements, and develop specific metrics for each aspect.
We introduce a speech-mesh synchronized representation
that exhibits these emergent properties and adopt it as a per-
ceptual loss. Our extensive analyses demonstrate that our
perceptual loss consistently enhances models across three
aspects. We believe that our defined aspects will guide future
research in generating more realistic 3D talking heads, and
our representation will serve as a key component.
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A. Supplementary Video
This work focuses on 3D facial motions, which are best
viewed in video format. Please refer to the attached sup-
plementary video. The video contains qualitative results
of lip synchronization on the VOCASET and MEAD-3D
test sets, demonstrating the effectiveness of our method in
enhancing lip synchronization in aspects of lip readability
and expressiveness.

B. Emergent Properties of 2D Speech Represen-
tation

In this section, we conduct further analyses of 2D speech
representation (i.e., 2D prior knowledge), which motivate
the transfer of the emergent properties of 2D speech repre-
sentation to the speech-mesh representation space using a
curriculum learning approach.

We observe that the 2D audio-visual speech representa-
tion, trained with a transformer architecture and an extensive
video dataset [1], inherently exhibits the desirable properties
for lip synchronization that we aim to achieve. We visualize
a cosine similarity versus temporal offset graph and a t-SNE
visualization of the 2D audio-visual speech representation
in Fig. S1. The speech representation exhibits the prop-
erties regarding the critical aspects of lip synchronization:

(a)	Temporal	Synchronization (b)	Lip Readability

Figure S1. Emergent properties of 2D speech representation.
We visualize a cosine similarity versus temporal offset graph and a
t-SNE visualization of the 2D audio-visual speech representation.
The 2D speech representation already possesses desired properties
we pursue, which motivates us to transfer the emergent properties
to the speech-mesh representation space.

(1) Temporal sensitivity in Fig. S1-(a), (2) clear separation
and clustering of speech features corresponding to the same
phoneme group in Fig. S1-(b), and (3) a directional progres-
sion of speech features as intensity increases from the lowest
to the highest levels in Fig. 5-(b) of the main paper *. This
motivates us to transfer these emergent properties to the 3D
speech-mesh representation through the curriculum learning
approach, as mentioned in Sec. 4 of the main paper. Fur-
thermore, as shown in Figs. 4 and 5 of the main paper, we
demonstrate that these properties are successfully transferred
to the speech-mesh representation.

C. Speech-Mesh Synchronized Representation

We provide more details on the network architecture of audio-
visual speech representation and speech-mesh representation
(Sec. C.1). In addition, we provide the training details of the
two-stage training process (Sec. C.2) and dataset statistics
of speech-mesh benchmark datasets (Sec. C.3).

C.1. Network architecture

To improve the reproducibility of our speech-mesh represen-
tation, we further illustrate the detailed network architectures
for the audio-visual speech representation and the speech-
mesh representation, which are shown in Table S1.

*We freeze the pre-trained speech encoder from stage 1 and utilize it as the
speech encoder in stage 2, which ensures that the speech representation in
both stages shares the same favorable property of expressiveness.
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Stage Module Input → Output Layer Operation

1

Speech Tokenizer Xs(Cs, Hs,Ws) → S(N,H) Conv2D((1, 16), (1, 16), H)

Speech Encoder Sunmask(Nunmask, H) →
[MHSA(H, 8) → FFN(H)]× 10 → LN

Zs(N
unmask, H)

Speech Decoder F′
s → Ŝ(Nmask, Cs ·Hs ·Ws)

Concat(Linear(H, 384)+ PE(Nunmask), PE(Nmask)) →
MHSA(384, 8) → FFN(384 · 4) →
[MHSA(384, 8) → MHCA(Zs, 384, 6) → FFN(384 · 4)]× 3 →
LN → Linear(Cs ·Hs ·Ws) → Slice[Nunmask :]

Video Tokenizer Xv(Cv, T,Hv,Wv) → V(M,H) Conv3D
(
(1, 16, 16), (1, 16, 16), H

)
Video Encoder Vunmask(Munmask, H) →

[MHSA(H, 8) → FFN(H)]× 10 → LN
Zv(M

unmask, H)

Video Decoder F′
v → V̂(Mmask, Cv ·Hv ·Wv)

Concat(Linear(H, 384)+ PE(Munmask), PE(Mmask)) →
MHSA(H, 8) → FFN(H) →
[MHSA(H, 8) → MHCA(Zv, H, 6) → FFN(H)]× 3 →
LN → Linear(Cv ·Hv ·Wv) → Slice[Munmask :]

Fusion Encoder Zs,Zv → Fs(N
unmask, H) [MHSA(H, 8) → MHCA(Zv, H, 8) → FFN(H · 4)]× 2

Zs,Zv → Fv(M
unmask, H) [MHSA(H, 8) → MHCA(Zs, H, 8) → FFN(H · 4)]× 2

2 Mesh Tokenizer Xm(T, V · 3) → M(T,H) Linear(H)

Mesh Encoder M → Zm(T,H) [MHSA(H, 8) → FFN(H)]× 10 → LN

Table S1. Architecture details. The parameters of network architectures. Conv2D(k, s, n) denotes a 2D Convolutional layer with kernel
size k, stride size s, and output channel of n. MHSA(d, nhead) denotes a multi-head self-attention layer with the input channels d and
the number of heads in multi-head attention nhead. MHCA(ca, d, nhead) denotes a multi-head cross-attention layer with additional
cross-attention input ca. PE(a) is a position embedding layer where a denotes the length of the position vector. FFN(d) is a feed-forward
layer. Linear(n) denotes a linear layer with output channels of n. LN denotes layer normalization and Slice[s :] denotes slice operation.

C.2. Training pipeline

Two-stage training process. In our experiment, we set T =
5, H = 512, and P = 30. For training the audio-visual speech
representation, we use Cs = 1, Hs = 64, Ws = 128, N = 512
for speech modality and Cs = 3, Hv = 160, Wv = 160, M
= 500 for video modality. We train the audio-visual speech
representation using LRS on two NVIDIA A6000 for 100
epochs with the AdamW optimizer (β1 = 0.9, β2 = 0.95 and
ϵ = 1e-8), where the learning rate is initialized as 3e-4, and
the mini-batch size is set as 40. For training the speech-mesh
representation, we use the number of vertices V = 5023. We
train the speech-mesh representation using LRS-3D with the
mini-batch size of 80, and other hyper-parameters remain
unchanged as Stage 1.

Perceptual loss. We employ our speech-mesh representation
as a perceptual loss to enhance the perceptual accuracy of
the 3D talking head model. We finetune our speech-mesh
representation using the VOCASET [8] train split on an
NVIDIA A6000 for 5 epochs with the initial learning rate 1e-
4 and other hyper-parameters remain unchanged as Stage 2.
To train the 3D talking head models with our perceptual loss,
we split the generated mesh from the model into 5 frames
using a sliding window size of 1. We make a batch of size 80
and get uni-modal embeddings from our representation. We

Dataset # Vertex clips # Speaker IDs Total hours FPS

VOCASET 475 12 0.5 30
BIWI 1109 14 1.4 25
LRS3-3D 17752 788 61.1 25
MEAD-3D 8765 15 10.2 30

Table S2. Statistics of speech-mesh paired benchmark. We use
VOCASET, LRS3-3D and MEAD-3D speech-mesh paired datasets
in our experiments. We construct two large-scale speech-mesh
benchmark datasets, LRS3-3D and MEAD-3D, using monocular
face reconstruction methods.
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Figure S2. Speech and lip intensity distributions across datasets.
We present speech and lip intensity distributions and corresponding
standard deviation values across datasets.

additionally apply the InfoNCE loss with a weight of 1e-7
to the original training loss of the model.
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C.3. Dataset statistics
We construct LRS3-3D and MEAD-3D by processing
LRS3 [1] and MEAD [45] videos using two monocular
face reconstruction methods, respectively: SPECTRE [13]
for LRS3, which ensures accurate lip movements, and
SMIRK [26] for MEAD, which captures diverse speech and
lip movement intensities. We construct a test split for LRS-
3D, involving 934 clips. We split MEAD-3D to construct a
test split, which includes 3470 clips.

Table S2 and Fig. S2 show the statistics of the exist-
ing (VOCASET [8], BIWI [12]) and the newly proposed
large-scale speech-mesh benchmark datasets (LRS3-3D and
MEAD-3D). As shown in Table S2, LRS3-3D and MEAD-
3D have notably larger data sizes than VOCASET and BIWI.
Fig. S2 presents the broader speech and lip intensity* distri-
butions of LRS3-3D and MEAD-3D with higher standard
deviations (σ), indicating greater variability in facial mo-
tions. In contrast, VOCASET and BIWI show limitations in
both scale and diversity.

D. Details for Human Study on Lip Synchro-
nization Criteria

Human preference between the speech and lip intensi-
ties. We conduct a preliminary experiment to demonstrate
the positive correlation of human preference between the
intensity of speech and lip movements in the 3D talking
face field. Using the intensity annotations from the MEAD
dataset [45], we first split the MEAD-3D dataset into three
categories: Level 1, Level 2, and Level 3, representing dif-
ferent intensity levels. Then, we train a 3D talking face
model [11] using VOCASET [8] (to ensure the quality of
generation) and each intensity split separately. This results
in three distinct models, each of which tends to generate lip
movements biased toward the intensity level present in its
training data, regardless of the speech intensity provided as
input. We input three speeches with intensity levels ranging
from Level 1 to Level 3 into each of the three biased mod-
els, producing nine intensity configurations in the generated
mesh sequences as shown in Tab.1-[Left] of the main paper.
We then asked 17 participants, a balanced group of males
and females from a non-expert background in the field, to
rank their preferences in three videos, assigning a score from
1 (least preferred) to 3 (most preferred). Each video has the
same speech (identical in utterance and intensity) but differs
in the intensity of the lip movements.

Human preference on Temporal sync. vs. Expressiveness.
We design a simple A/B test to investigate an interesting
aspect of human perception for lip synchronization. We use
the two biased models from the previous human study: one

*Lip intensity was normalized by eye distance to account for differences
between FLAME and BIWI topologies.

trained to generate Level 1 lip movements and the other
trained to generate Level 3 lip movements, regardless of the
speech intensity. For each model, we create two types of
samples. Sample A is temporally synchronized but lacks
expressive synchronization (e.g., speech of Level 3 intensity
and lip movements of Level 1 intensity). In contrast, sample
B has expressive synchronization (e.g., speech of Level 3
intensity and lip movements of Level 3 intensity) but is
temporally misaligned. To introduce the temporal mismatch
in Sample B, we make the speech lead the lip movements
by 100ms, which exceeds twice the established maximum
acceptable synchrony [43]. We then asked 28 participants,
comprising a balanced group of males and females from a
non-expert background in the field, to choose which sample
they prefer based on how well the lip movements correspond
to the speech in sample A vs. B.

E. Evaluation Metrics
We present the comprehensive definitions of the evaluation
metrics and their implementation details (Sec. E.1). In addi-
tion, we provide the human study on the perceptual metric
(Sec. E.2), which demonstrates the correlation between our
perceptual metric and human preference.

E.1. Definition and implementation details

Mean Temporal Misalignment (MTM). Let V(t) represent
the ground truth vertex sequences, where each frame t con-
sists of vertex positions vt ∈ RN×3, with N being the num-
ber of vertices. Similarly, V̂(t) represents the predicted ver-
tex sequences, with predicted vertex positions v̂t ∈ RN×3.
For each sample k, we select two specific vertices that corre-
spond to the center of the upper and lower lips, extracting the
upper-lip vertex sequence Vu(t) ∈ RT×3 and the lower-lip
vertex sequence Vl(t) ∈ RT×3 (refer to Fig. S3).

We then calculate the Euclidean distance between the
upper and lower lip vertices over time to derive the ground
truth lip distance sequence dv(t) = ∥Vu(t)−Vl(t)∥. The
same process is applied to obtain the predicted lip distance
sequence d̂v(t). To reduce noise, we apply a Gaussian filter
to both lip distance sequences.

Next, we compute the first-order derivatives of the
smoothed lip distance sequences to capture the dynamic
changes in lip movement. We then use Derivative Dynamic
Time Warping (DDTW) [19] to determine the optimal align-
ment path A = {(i, j)} between the derivative sequences

δd̃v(t) and δ
˜̂
dv(t). We identify local extrema (peaks and val-

leys) in each derivative sequence and match only extrema of
the same type (i.e., both maxima or both minima) to compute
the absolute time difference δtn = |i− j| (refer to Fig. S4).

For each sample k, the sample mean temporal misalign-

ment ∆tk is computed as ∆tk =
1

M

∑M
m=1 δtn, where

M is the number of matched extrema pairs in the sample.
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(a) lower-lip central vertex (b) upper-lip central vertex

Figure S3. Central vertices of the lower and upper lips. We
select two specific vertices that correspond to the center of the upper
and lower lips to extract the lip vertex displacement sequences.

Figure S4. An example of DDTW matching results between
ground truth and predicted lip distance sequences. We present
an example of the DDTW local extrema correspondences of the
ground truth and predicted lip vertex displacement sequences. We
represent matched local extrema using green lines.

Finally, the overall mean temporal misalignment is given

by ∆t =
1

K

∑K
k=1 ∆tk, where K is the total number of

samples. A smaller ∆t indicates better temporal alignment
of the predicted sequences with the ground truth lip move-
ments. To express the Mean Temporal Misalignment (MTM)
in milliseconds, we multiply ∆t by the frame duration for
the given dataset. For instance, for a dataset with 25 FPS,
the MTM is obtained by multiplying ∆t by 40ms. Refer
to Algorithm 1 for more details on the MTM calculation.
Furthermore, to validate the physical accuracy of our pro-
posed temporal synchronization metric, we present a graph
showing the relationship between the temporal offset and
the corresponding MTM values. Specifically, we introduce
temporal mismatch to the ground truth mesh sequences of
VOCASET [8] by making the speech leading the mesh se-
quences by 0 to 10 frames (i.e., 0 to 333ms for VOCASET).
Figure S5 shows that MTM accurately captures the degree of
temporal mismatch across the samples, demonstrating the ef-
fectiveness and physical accuracy of our proposed temporal
synchronization metric.

Perceptual Lip Readability Score (PLRS). We train
speech-mesh representation using our proposed two-stage
training process with different datasets, initializations, and
batch sizes. For both Stage 1 and Stage 2, we use a batch size
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Figure S5. Physical accuracy of Mean Temporal Misalign-
ment. We introduce temporal mismatch to the ground truth mesh
sequences of VOCASET [8] by shifting the speech to lead the mesh
sequences by 0 to 10 frames (where 0 represents no mismatch). For
each temporal offset, we calculate the average MTM and plot a
graph showing the relationship between the temporal offset and the
corresponding MTM values.

of 256. Given a speech and generated mesh pair (Xs, X̂m),
we split the generated mesh into 5 frames with a sliding
window size of 5 to make mesh tokens {M̂i}Gi=1 , and the
speech is also converted into corresponding speech tokens
{Si}Gi=1. We then compute the average cosine similarity be-
tween mean pooled speech embeddings {cs,i}Gi=1 and mesh
embeddings {cm,i}Gi=1:

PLRS(S, M̂) =
1

G

G∑
i=1

cs,i · cm,i

∥cs,i∥ ∥cm,i∥
. (a)

Speech-Lip Intensity Correlation Coefficient (SLCC).
First, we define speech intensity using speech loudness,
specifically the Root Mean Square (RMS) value, which is a
widely accepted measure of speech intensity in signal pro-
cessing. RMS loudness effectively captures the energy of the
speech signal and provides an accurate representation of per-
ceived speech intensity. However, since RMS values can vary
based on recording conditions (e.g., microphone gain and
distance from the microphone), we perform identity-wise
z-normalization on the RMS values to standardize them, as-
suming that clips belonging to the same identity are recorded
under similar conditions. The Speech Intensity (SI) is thus
defined as:

SIk =
RMSk − µs,i

σs,i
, (b)

where RMSk is the averaged RMS value of k-th video clip
and µs,i and σs,i are the mean and standard deviation of the

14



speech RMS values for the clips with identity i ∈ I .
To define Lip Intensity (LI), we first measure the averaged

lip displacement value of k-th video clip Distk. as:

Distk =

√√√√ 1

Tk − 1

Tk−1∑
t=1

(
1

Vl

Vl∑
v=1

∥lt+1,v − lt,v∥

)2

, (c)

where Tk is the number of frames in clip k, Vl is the number
of vertices in the lip region, and lt,v ∈ R3 represents a
vertex position in the lip region at time t. Similar to Speech
Intensity, we perform identity-wise z-normalization to the
lip displacement values to mitigate individual bias in lip
movement as:

LIk =
Distk − µl,i

σl,i
, (d)

where µl,i and σl,i are the mean and standard deviation of
the lip displacement values for the clips belonging to identity
i ∈ I .

Finally, we can obtain the Speech and Lip Correlation
Coefficient as:

rSL =

∑K
k=1(SIk − S̄I)(LIk − L̄I)√∑K

k=1(SIk − S̄I)2
√∑K

k=1(LIk − L̄I)2
, (e)

where S̄I = 1
K

∑K
k=1 SIk and L̄I = 1

K

∑K
k=1 LIk.

E.2. Human study on perceptual metric
To validate that our proposed perceptual metric, Percep-
tual Lip Readability Score (PLRS), effectively evaluates
perceptual alignment, we conduct a human study that as-
sesses the correlation between the metric scores and human
preferences. We collect meshes from the ground-truth VO-
CASET [8] dataset and those generated by FaceFormer [11],
CodeTalker [46] and SelfTalk [21]. We measure the PLRS
and the existing evaluation metric Lip Vertex Error (LVE)
for the generated meshes of each model, and subsequently
rank the models by their PLRSs and LVEs. We ask 16 par-
ticipants, evenly balanced in gender and from non-expert
backgrounds, to rank the models based on their preferences.
We then compute the Spearman’s correlation coefficient ρ to
compare the PLRS rankings and the LVE rankings with the
human preference rankings. As shown in Table S3, PLRS
exhibits a far more positive correlation with human prefer-
ences compared to the LVE. This highlights the efficacy of
our proposed metric in evaluating perceptual lip readability
from a human perspective.

F. Implementation Details of Ablation Study
In this section, we provide implementation details of model
variants ablated from our speech-mesh representation: the
3D SyncNet and the representation w/o 2D prior.

Metric Spearman’s ρ
LVE 0.166

PLRS 0.437
Table S3. Human study on perceptual metric. We conduct a
human study to validate our proposed perceptual metric, PLRS. We
compute the Spearman’s correlation coefficient ρ to compare the
PLRS rankings with the human preference rankings.

3D SyncNet. Inspired by Chung et al. [6], we train 3D
SyncNet to evaluate the performance of our transformer-
based model compared to a CNN-based model. 3D SyncNet
is trained using InfoNCE loss with a batch size of 80. The
architecture of 3D SyncNet consists of the mesh encoder
comprising three dilated convolutional layers and the speech
encoder with six convolution layers followed by two linear
layers. The mesh and speech features are extracted from each
encoder, respectively. We train 3D SycnNet on an NVIDIA
RTX 3090 GPU for 20 epochs using LRS3-3D. Also, for
imposing the perceptual loss to 3D talking head models with
3D SyncNet, we finetune the model with VOCASET [8]
train split for 5 epochs, as our speech-mesh representation
model does.
Ours w/o 2D prior. We train speech-mesh representation
without Stage 1 training to evaluate the effectiveness of our
learned 2D prior. We train the speech encoder and mesh
encoder, both with the same architecture as Stage 2, and the
other hyperparameters are the same as in Stage 2.

G. Additional Results
In this section, we present quantitative results on human stud-
ies (refer to Sec. G.1) and Upper Face Dynamics Deviation
(FDD) evaluation (refer to Sec. G.2), comparing samples
generated by the base models [11, 21, 46] with and with-
out perceptual loss to demonstrate the effectiveness of our
speech-mesh representation. Additionally, we provide the
qualitative result of temporal synchronization for the base
models [11, 46] (refer to Sec. G.3). We also provide compar-
isons on the stability of perceptual loss and cosine similarity
for ablated model variants (refer to Sec. G.4).

G.1. Human study on applying perceptual loss
We conduct a human study to evaluate the perceptual pref-
erence for our method with two configurations: (1) training
and testing on VOCASET, and (2) training on the combined
MEAD-3D and VOCASET and testing on MEAD-3D, as
mentioned in Sec. 6.1 of the main paper.

In the first configuration, we ask participants, evenly bal-
anced group of males and females with non-expert back-
grounds, to compare two videos: one generated by the base
model [11, 21, 46] without our perceptual loss and the other
with it. To assess the quality of generated meshes, we design
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two separate descriptions—one focusing on lip synchroniza-
tion and the other on overall quality. For lip synchroniza-
tion, participants are provided with the following description:
“Please evaluate the lip synchronization between the speech
and the lip movements in videos A and B, and choose the
one that is more realistic and preferred.” A total of 18 partic-
ipants take part in this evaluation. Table S4 shows that the
participants significantly favor the models incorporating our
perceptual loss with an overall preference rate of 72.9%. For
overall quality, the description is as follows: “Please evaluate
the overall quality of facial movements in videos A and B,
and choose the one that is more realistic and preferred.” This
evaluation involves 15 participants. As shown in Table S5,
the participants show a strong preference for the model incor-
porating perceptual loss, with an overall preference rate of
73.3%, indicating that the perceptual loss not only improves
lip synchronization but also enhances the overall quality of
facial movements.

In the second configuration, we ask 14 participants, also
an evenly balanced group of males and females with non-
expert backgrounds, to compare three videos: one generated
by the base model [11, 21, 46] trained on VOCASET, another
generated by the base model trained on both MEAD-3D and
VOCASET without our perceptual loss, and the other gen-
erated by the base model trained on both MEAD-3D and
VOCASET with our perceptual loss. The description is as
follows: “Please rate the lip synchronization between the
speech and the lip movements in videos A through C, with
3 being the most realistic and preferred, and 1 being the
least.” As indicated in Table S6-(a) and (b), the participants
significantly prefer the models incorporating MEAD-3D and
our perceptual loss each by in 76.9% and 67.9% overall.
Notably, incorporating both MEAD-3D dataset and the per-
ceptual loss results in 84.6% of participants favoring the
model, as shown in Table S6-(c), compared to the original
models.

This preference on the two configurations highlights the
effectiveness of our speech-mesh representation as a plug-in
module in enhancing lip synchronization from the perspec-
tive of human perception.

G.2. FDD evaluation on applying perceptual loss
In Table S7, we measure Upper Face Dynamics Deviation
(FDD) [46], a widely used metric for the upper face evalua-
tion, to assess the effectiveness of our perceptual loss. The
models applying our perceptual loss achieve similar or im-
proved FDD scores. It is expected because FDD is not the
main focus of our work due to no direct relationship with
the quality of lip movements.

G.3. Qualitative result of temporal synchronization
We present the qualitative result of temporal synchronization
using existing base models [11, 21, 46] (See Fig. S8). Given

Model w/o Our rep. w/ Our rep.

FaceFormer 13.7% 86.3%
CodeTalker 32.4% 67.6%
SelfTalk 35.3% 64.7%

Overall 27.1% 72.9%
Table S4. Human study results on lip synchronization in con-
figuration 1. We adopt A/B test and report the percentage (%) of
preferences for A (Ours) over B, assessing the generated meshes on
lip sync. Participants significantly favor the models incorporating
our perceptual loss by in overall 72.9%.

Model w/o Our rep. w/ Our rep.

FaceFormer 14.4% 85.6%
CodeTalker 27.8% 72.2%
SelfTalk 37.8% 62.2%

Overall 26.7% 73.3%
Table S5. Human study results on overall quality in config-
uration 1. We adopt A/B test and report the percentage (%) of
preferences for A (Ours) over B, assessing the generated meshes
on overall quality. Participants show a strong preference for the
models applying our perceptual loss, with an overall preference
rate of 73.3%.

(a)	 (b)	 (c)	

Figure S6. Perceptual loss stability. We visualize the perceptual
loss between GT speech-mesh pairs on VOCASET samples. Our
representation demonstrates strong generalization capability and
provides a stable training signal compared to 3D SyncNet and our
representation without 2D prior.

rendered 3D face mesh sequences, we place a vertical line
with two pixel points near the lip region and extract the y-t
slices of the mesh sequences to visualize the timing of lip clo-
sure and opening. Next, we align the y-t slices with their cor-
responding speech waveforms and mel-spectrograms along
the time axis. We observe that these models already have
a reasonable temporal synchronization capability. Specifi-
cally, the timing of lip closure (e.g., for the /p/ sound) in the
y-t slices aligns with minimal amplitude in both the speech
waveforms and mel-spectrogram, while the timing of lip
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Model (a) (b) (c)

Original Original + MEAD-3D Original + MEAD-3D Original + MEAD-3D + Our rep. Original Original + MEAD-3D + Our rep.

FaceFormer 33.3% 66.7% 32.1% 67.9% 19.2% 80.8%
CodeTalker 17.9% 82.1% 34.6% 65.4% 19.0% 91.0%
SelfTalk 17.9% 82.1% 29.5% 70.5% 17.9% 82.1%

Overall 23.1% 76.9% 32.1% 67.9% 15.4% 84.6%

Table S6. Human study results on lip synchronization in configuration 2. We report the percentage (%) of preferences for A over B,
assessing the generated meshes on lip sync. Overall 84.6% of participants prefer the model with MEAD-3D and our perceptual loss.

(a)	 (b)	 (c)	

Figure S7. Cosine similarity stability. We visualize the cosine
similarity between GT speech-mesh pairs on VOCASET samples.
Our representation demonstrates strong generalization capability
compared to 3D SyncNet and our representation without 2D prior.

FDD ↓
(×10−7mm)

FaceFormer 3.789
+ Ours rep. 3.325
CodeTalker 3.414
+ Ours rep. 3.259

SelfTalk 3.319
+ Ours rep. 3.424

Table S7. FDD evaluation. We report Upper Face Dynamics
Deviation (FDD) scores to evaluate the variation in upper facial dy-
namics, which is not the main focus of our work. As expected, the
models trained with our perceptual loss show similar or improved
FDD scores.

opening (e.g., for the /r/ sound) in the y-t slices coincides
with a large amplitude in both speech representations.

G.4. Stability comparison on loss and cosine simi-
larity

To utilize our speech-mesh synchronized representation as
a perceptual loss, it is essential to provide a stable training
signal to the 3D talking head model. In the domain of 2D
audio-visual speech representation, Yaman et al. [47] reveal
that the transformer-based architecture [29] learns more ro-
bust representation and provides more stable guidance to
talking head models compared to a CNN-based approach [6].
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Figure S8. Qualitative results of temporal synchronization on
existing models. We plot y-t slices of rendered 3D face mesh
sequences on the lip region with corresponding speech waveforms
and mel-spectrogram. We also indicate the time steps of lip closure
and opening with vertical lines. This implies that existing models
already exhibit reasonable temporal sync. capability.

To explore whether these observations hold for 3D speech-
mesh representations, we evaluate both the lip-sync loss
and cosine similarity across 3D SyncNet, our representation
without 2D prior and our final representation. This analysis
aims to validate the effectiveness of the transformer-based
architecture and curriculum learning with a pre-trained 2D
speech representation.

Specifically, we measure the perceptual loss and cosine
similarity, computing the mean and standard deviation for
both the train and test samples. Figures S6 and S7 show
the comparisons of perceptual loss and cosine similarity
comparison across the three representation variants. We
denote the train samples as green box plots and test samples
as orange box plots, respectively.

Our speech-mesh representation (Figs. S6-(c) and S7-
(c)) demonstrates the highest stability, exhibiting the lowest
standard deviations (the height of the box plots) on test
set in both lip-sync loss and cosine similarity. In contrast,
the representation without 2D prior (Figs. S6-(b) and S7-
(b)) reveals significant discrepancies between the train and
test samples on both the lip-sync loss and cosine similarity,
indicating poor generalization capability. Additionally, it
shows the highest standard deviations, which potentially
cause unstable training. Meanwhile, 3D SyncNet (Figs. S6-
(a) and S7-(a)) displays the worst mean values of perceptual
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Time ↓ Mem. ↓
(sec.) (MB)

FaceFormer 0.447 1461
+ Ours rep. 0.537 1738
CodeTalker 0.138 3393
+ Ours rep. 0.289 3675

SelfTalk 0.175 8204
+ Ours rep. 0.320 8480

Table S8. Training efficiency. We compared the memory consump-
tion and single-iteration speed during training with and without the
perceptual loss.

loss and cosine similarity among the three.

H. Discussion

Limitations. While our perceptual loss is applied only dur-
ing training, which ensures that the resource requirements at
inference remain unchanged, it requires additional computa-
tional resources during training. In Table S8, we compare
memory consumption and single-iteration speed during train-
ing, measured on a single A6000 GPU. Also, to capture the
intricate correspondence between speech and 3D face mesh,
we construct large-scale speech-mesh paired datasets, LRS3-
3D and MEAD-3D. To this end, we utilize state-of-the-art
monocular face reconstruction methods [13, 26], which may
impose limitations on the quality of the 3D mesh in the
reconstructed datasets.
Ethical considerations. Our method can generate realistic
3D talking faces from arbitrary audio signals, relying on both
the 3D scan data collected from actors and the reconstructed
data from 2D talking videos. Thus, while this technology has
powerful applications, it also poses risks of misuse, such as
creating harmful or embarrassing content. To mitigate these
risks, we emphasize raising public awareness and promoting
ethical and responsible use through continued research.

Algorithm 1 Mean Temporal Misalignment Calculation

Require: GT vertex sequence V (t), Predicted vertex sequence V̂ (t)
Ensure: Overall mean temporal misalignment ∆t

1: Initialize list of sample mean misalignments: {∆tk} ← ∅
2: for each sample k do
3: Initialize time differences list: {δtn} ← ∅
4: Extract lip vertices:
5: Upper lip vertex Vu(t) ∈ R3 from V (t)
6: Lower lip vertex Vl(t) ∈ R3 from V (t)

7: Predicted upper lip vertex V̂u(t) ∈ R3 from V̂ (t)

8: Predicted lower lip vertex V̂l(t) ∈ R3 from V̂ (t)
9: Compute lip distance sequences:

10: dv(t) = ∥Vu(t)− Vl(t)∥
11: d̂v(t) =

∥∥∥V̂u(t)− V̂l(t)
∥∥∥

12: Smooth sequences using Gaussian filter:
13: d̃v(t) = Gauss(dv(t))

14: ˜̂
dv(t) = Gauss(d̂v(t))

15: Compute derivatives:
16: δd̃v(t) = d̃v(t)− d̃v(t− 1)

17: δ
˜̂
dv(t) =

˜̂
dv(t)− ˜̂

dv(t− 1)
18: Perform DDTW to find alignment pathA = {(i, j)}
19: Identify local extrema in d̃v(t) and ˜̂

dv(t)
20: for each aligned pair (i, j) ∈ A do
21: if i and j are matching extrema of same type then
22: if j is within neighboring extrema range of i in d̃v(t) then
23: Compute time difference: δtn ← |i− j|
24: Append δtn to {δtn}
25: end if
26: end if
27: end for
28: if {δtn} ̸= ∅ then
29: Compute mean delta time for clip k:

30: ∆tk =
1

N

∑N
n=1 δtn

31: Append ∆tk to {∆tk}
32: end if
33: end for
34: if {∆tk} ̸= ∅ then
35: Compute overall mean temporal misalignment:

36: ∆t =
1

K

∑K
k=1 ∆tk

37: else
38: ∆t is undefined
39: end if
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